东莞市兆科电子材料科技有限公司

兆科 · 导热材料解决方案综合服务商让散热变得更简单

400-800-1287

181-5378-0016

您的当前位置:首页 >全站搜索>搜索:采用

搜索结果

9.0W导热泥|导热凝胶TIF090-11

9.0W导热泥|导热凝胶TIF090-11

TIF090-11 是一款柔软的硅胶型间隙填充垫,内含导热填料并采用独特配方,兼具优异的导热性能与极佳的柔软性。与一般导热矽油相比,TIF090-11具备更高的黏度,有效防止填料与矽胶基材分离,同时在施加压力时具备更稳定的黏着线控制,提升产品可靠度。TIF090-11的使用方式类似于传统导热膏,并可配合多种商用设备施作,例如点胶或自动化生产设备等。其适用于多种高功率电子元件与封装形式,包括:倒装芯片微处理器(Flip-Chip MPU)、PPGA、微型BGA、BGA、DSP晶片、圆形加速器晶片、LED照明模组等。
30W Sharp Metal L01液态金属

30W Sharp Metal L01液态金属

TS-Ziitek-Sharp Metal L01液态金属在常温下为波态形式且具备低表面张力。普通金属则通过加热达到其熔点后变为液态。 采用新材料技术和合金化的办法,可以把常温下为固态或者熔点很高的金属等做成有高流动性和导热性的液态金属。 液态金属不易蒸发,不易泄露,安全无毒,物化性质稳定,是一种非常安全的流动工质,能保证大功率散热系统的高效,长期、稳定运行。 液态金属散热技术可为大功率散热需求提供全面而高效的解决方案。波态金属涉及的是散热领域的底层技术,随着未来芯片集成度的提高,液态金属散热器发挥的作用会更大。
Kheat PI发热膜| 加热膜

Kheat PI发热膜| 加热膜

Kheat PI加热膜系列是兆科公司研发生产的加热产品,特别柔软,采用改良后PI膜,加热性能更佳,可按设计要求定制,在不同面积部位可满足不同的加热功率要求和加热温度要求,实现在加热面上的温度分布。
网络交换机温度过高成困扰?小编揭秘高散热策略

网络交换机温度过高成困扰?小编揭秘高散热策略

网络交换机作为现代数据中心和企业网络的核心硬件,承担着繁重的数据交换任务。长时间、高负载的运行状态使其温度控制变得尤为关键。一旦温度过高,不仅会导致性能下降、系统崩溃,还可能直接损坏设备,带来严重的后果。而在常规的解决预防交换机温度过高时,如:优化设备配置与负载分配、改善设备散热设计、优化安装环境与空调系统、定期维护与清洁,除了硬件和环境的管理外,采用效率高的热管理材料也是预防交换机温度过高的不二选择。如:使用导热硅胶片、导热凝胶等,来提升设备的热传导效率,能够明显改善散热效果。
电子元器件采用导热灌封胶的优势分析

电子元器件采用导热灌封胶的优势分析

在电子元器件的制造与装配流程中,灌胶工艺扮演着至关重要的角色。通过选用特定的导热灌封胶材料对电子元器件进行封装、固定及保护,该工艺在提升元器件综合性能、延长其使用寿命及增强抗环境干扰能力等方面发挥着不可或缺的作用。
光纤通信设备散热采用导热硅脂的5大应用优势

光纤通信设备散热采用导热硅脂的5大应用优势

光纤通信设备的散热管理至关重要,它不仅关乎设备的稳定运行,还直接影响到设备的使用寿命。为了有效散热,设计中常采用多种散热手段,如散热风扇、散热片、热管、散热板以及温控系统等。精心布局元件与空间,确保良好的通风与空气流动,是实现高散热的关键。在这些散热方法中,涂抹导热硅脂作为一种灵活的散热解决方案,备受青睐。
AI发展驱动光模块升级:高速传输与电磁屏蔽挑战

AI发展驱动光模块升级:高速传输与电磁屏蔽挑战

光模块广泛应用于由各类通信设备构成的复杂环境中,若其电磁屏蔽设计不完善,不仅会干扰自身性能,还可能严重影响到周围通信设备的正常运行。面对这一挑战,采用高电导率的电磁屏蔽材料是基础措施,但在应对高频电磁泄露时,这些材料可能力不从心。此时,引入吸波材料或导热吸波材料便显得尤为重要,它们能有效吸收部分电磁波,进一步减少干扰,保障通信系统的整体稳定性和可靠性。
智能投影仪散热采用这2款导热界面材料,快来看看有你满意的方案吗

智能投影仪散热采用这2款导热界面材料,快来看看有你满意的方案吗

除了投影仪光源产生的热量外,其电源也会在工作时产生很大的热量。投影仪的光源、成像系统、电源等产生的热量都在机器内狭小的空间内汇聚,其产生的高温不仅对于投影仪的正常使用有影响,还会大大缩短内部元器件的使用寿命。
散热模组中的导热硅胶片该如何选型?

散热模组中的导热硅胶片该如何选型?

散热模组是运用于系统、装、设备等散热用途的模组单元,采用散热模组来散热是目前大多数紧凑型电子产品有限的散热方式之一,同时也是目前主要的散热方式。而在散热模组中大多会采用导热硅胶片等类似产品协助导热散热,从而达到良好的散热效果。
导热灌封胶在新能源锂电池的灌封散热方案

导热灌封胶在新能源锂电池的灌封散热方案

导热灌封胶的主要应用是动力电池。电池的热量通过导热灌封胶引至外壳表面,外壳多采用金属材料,可直接降低电池的温度,保证电池的可靠性。
对于硅油敏感设备散热,安利一款低挥发、高导热硅胶片

对于硅油敏感设备散热,安利一款低挥发、高导热硅胶片

对于硅油敏感的设备,兆科的TIF700L-HM低挥发导热硅胶片,是针对需要低渗油的应用场景设计的,相对于普通硅胶片在持续的压力下出油更少。低挥发系列采用特殊设备和工艺制成,具有非常低的小分子挥发性、良好的导热性、高压缩性、柔软和高回弹性、兼具良好的绝缘性、非常适合用于安防设备、投影、车载电子设备、镜头、激光设备等对低分子挥发有限的场景。
想要提高汽车AR-HUD系统散热,导热材料你值得拥有

想要提高汽车AR-HUD系统散热,导热材料你值得拥有

为了解决散热难问题,一般在后壳采用金属材质并设计了大面积的散热孔,然后在发热元件与后壳之间用导热界面材料来减小发热元件与散热器之间的接触热阻,提升散热效果。因此AR-HUD系统散热时,需要以下导热界面材料来辅助
散热模组的CP搭档——导热硅胶片

散热模组的CP搭档——导热硅胶片

而在散热模组中大多会采用导热硅胶片等类似产品协助导热散热,两者相结合从而达到更好的散热效果。
导热相变化为数据中心服务器提供良好的散热帮助

导热相变化为数据中心服务器提供良好的散热帮助

数据中心的服务器、交换机类产品目前采用风冷、液冷等方式进行散热,实际测试中,服务器主要的散热部件为CPU。导热相变化相对导热垫具有更好的填隙能力,实现非常薄的粘合层,从而提供较低的热阻。
开关电源半导体器件散热解决方案

开关电源半导体器件散热解决方案

由于半导体器件所产生的热量在开关电源中占主要地位,其热量主要来源于半导体器件的开通、关断、导通损耗。从电路拓扑方式上来讲,采用零开关变换拓扑方式产生谐振使电路中的电压或电流在过零时开通或关断,可大限度地减少开关损耗,但也无法完全消除开关管的损耗,故利用散热器及在与散热器的接触面加上导热硅胶片是常用的散热解决方法。
功率模块散热应用导热硅脂的正确操作方法

功率模块散热应用导热硅脂的正确操作方法

在功率半导体模块的应用中,通常采用导热硅脂将功率器件产生的热量传导至散热器,然后通过风冷或水冷散热。正确使用导热硅脂不仅能提高功率模块的散热效能,还能提高使用过程中的可靠性。
智能手机散热重要辅料——导热石墨片

智能手机散热重要辅料——导热石墨片

电子器件的散热问题如果没有跟上节奏,性能越高的产品就会越发被控制发展。智能手机散热设计是不会缺少导热石墨片材料的,厂家都是采用导热石墨片在CPU芯片与中间层两者之间散热。
导热硅脂帮助智能音箱提高散热效率,增强系统稳定性

导热硅脂帮助智能音箱提高散热效率,增强系统稳定性

智能音箱通常会采用铝合金外壳或散热孔等设计,来增加散热面积和通风效果。另外,还可以在内部使用导热硅脂等材料来提高散热效率。
多款导热界面材料大幅度提升LED散热效率

多款导热界面材料大幅度提升LED散热效率

大功率LED由于通过的电流较以往的小功率LED大得多,芯片部位的热量流动途径,芯片产品的热量通过底部金属块,经焊料传至PCB铜基板、铝基板,再采用导热界面材料来降低PCB与散热器间接触热阻,将热量快速转移到散热器。常用导热界面材料主要包括导热硅胶片、导热硅脂、导热凝胶等。除了导热界面材料,热管和制冷片也可常用于大功率LED散热。
高速光模块散热与内部干扰问题,导热吸波材料为其同步解决

高速光模块散热与内部干扰问题,导热吸波材料为其同步解决

应对高速光模块发热量过大和内部干扰问题,可以使用导热吸波材料,采用高分子硅橡胶为基材,添加陶瓷粉,软磁颗粒以及相应的助剂制成的复合材料,具有导热和降低电磁干扰双重功能,降低电磁干扰,使信号完整性更好;高性能导热使得电子器件更加稳定。